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LONG-PERIOD SATELLIIE PERTURBATIONS
UNDER THE ACTION OF SOLAR RADIATTON PRESSURE)

by

E. N. Polyakhova

Let us c-nsider an artificial planetary satellite whose orbital position

is fixed by the sic Kepler elements . (j 1,2,...,6). The equation of the per-3

turbed motion affe,.ted by light radiation pressure can be written as an equation

in a small paramet..r

dx" ) [k= 1, 2 ... ,""-- -,?.ti "e, Grp O- , 2, 6).(1

where o, the ratio of the moduXus of the perturbing acceleration to the gravita-

tional parameter of the planet, serves as the small parameter. Equation (1) indi-

cares that the right-hand terms contain the orbital elements, the sun's longitude

X and the satellite's orbital eccentricity E.

Equation (1) may be integrated approximately using either Picard's method

or the small-parameter method, since for an equation such as (I) the first and

second approximations agree for both methods [lj. The transformation

SES L, E)dt= j kX, X_ ~dE 2

*0
where x xj (t - to) are the initial values of the elements, is useful in evalua-

tin& the integral. Explicit expressions for the right-hand terms of (1) are easily

Translated from Vestnik Leningradskogo Universiteta [Bulletin, Leningrad
University], No. 7, pp. 144-152 (1970).
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obtained from the known diflerential equations of perturbed motion, the equations

being in Newtonian form--i.e. containing components of the perturbing acceleratiou

[2]. The perturbing acceleration will be defined by the formulas

F -- Fu, F= , (3)

where P is the magnitude of the solar radiation pressure at the planet's orbit,

A/m is the "surface-to--ass" ratio of the satellite, u0 is a unit vector in the

earth-sun direction. Formulas (3) correspond to a spherical satellite model, for

which the force of tbe pressure is known not to depend on the reflectivity. It is

convenient to define the components of the unit vector u in an orthogonal system

of axes located at the pericenter of the satellite's orbit (radial, transverse and

bi-normal directions). The derivations of these formulas may be found in reference

[3]. We cite here the final expressions for the projections of the unit vector

on these axes:

6 6S~=XAjcos,, =----Asisnu,h W1=lS"A, sinai,

2-I i. + L--7

A,= cosi -sin'L, z,=w +2 .•10,

"Cos COS2 L2'

At'- sin -L-cos2  .=a, ---.. (4)
I

As=- sip .-. ins, az--- +, --

As - sin i sin2, F =. -

A.: = sin .- sin2 -= ---- o

A,-sin 1cos-, '

A, cos i sin s, a:
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Formulas for the perturbations over n single revolution can be derived

by integrating equation (1), taking (2) and (4) into account, with the condition

that the orbital elements and the solar longitude can be considered to be consta.ats

to within acceptable accuracy over one revolution of the satellite:

IS "(Q- +(Q 2Q.IQ,)1.

ae = d-• (SQ2 - TO.,),

ai-"a W(Q; cosw- Q2 sin u)),

L=- W(Q, cosW + Qasin4),sin 1 (5)
a

2 ;
Z=o = (SQ - TQJ) - cos iRQ,

1•,i -= =',:=i1zeS -,V I - e: (Zs + cos iC2) +

+ 2a2 z V1I -e• (SQ 2+ TQ,),

where the quantioties Qi are defined by

4 Ecos",

Q: =1E -2 (1 -,e2) sinE+ Lsin 2E3
Q3 = e i--') cos 2E,

Q ='-' VT--e:: E 4e sinE- + sin 2E,Q; = -+ ' (3E - 2esin E±-.sin 2E>

Q,= -- e cos E + cos 21.'.

Formulas (5) are convenient for calculating the perturbations over any number of

orbital periods q, by recalculating the elements from revolution to revolution in

accordance with the scheme

The quantities (6) must be calculated within the limits E2 to El,vhich means that

the integration is carried out over a complete period of change in E from 0 to 2.T,

-3-



from which we exclude the region of shadowing by the planet when there is no

acceleration perturbation. If the shadowing limits in the orbit are defined as

points with the eccentric anomalies El (entering) and E2 (leaving), the integration

must be carried out within the limits 0 to RV1 and from E2 to 2r! if the perigee

(E - 0) lies in light (E2 - E1 > 0) and from E2 to E if the perigee lies in the

shadow (E2 - E < 0).

Formulas (5) for the case of total illumination can be used for calcu-

lating the perturbations over one or a number of revolutions, or also over some

portion of a revolution. Having obtained these, it is simple to follow the evo-

lution of the orbit of satellites over long intervals of time by computing the

elements from orbit to orbit. Since in these formulas the perturbing influence of

the oblateness of the planet is not taken into account, the computed results will

be close to the real picture of the evolution of very high orbits with uniform

physical characteristics of the satellite and for lighter satellites during single

orbits.

In this paper we investigate the long-period perturbations of the satellite

orbital elements. We shall not consider short-period perturbations caused by

shadowing effects. The sequence for comparing the evolution of the orhlts is as

follows: we first set up the model of a light spherical satellite (A/m = 200 cm 2/g)

and consider the perturbations for orbits of different dimensions and orientations

around the earth; second, we consider different satellites to study the influence

of the parameter A!m; third, we examine tuo identical satellite orbits for Earth

and Marn (with like parameters A/m) to compare the satellite perturbations for differ-

ent planets.

We now -turn to perturbations of earth satellites (Pr = 0.46 X 10-4 g/cm.sec )

and examine veparately the -erturbdtions of varicus periods. It follows from the

form of formula (4) that the perturbation periods are determined by the rates of
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change of the quantities x•,1, ,2. Obviously, we must first of all consider

the yearly periodicity related to solar motion; this is conveniently done by vary-

ing the elements e and w, which are subjected to the largest relative changes due

to radiation pressure of the elements. The elements i and Q are changed rather

weakly over the course of a year (especially with small values of e), since e

appears linearly in the coefficient in the year term in Q2 " The semi-major axis a,

in general, does not change with full illumination. The change in M0 is determined

basicall; by the change in a; and will not be considered individually.

Dependence on Semi-major Axes. Let us consider an orbit with the elements

e. = 0.1, io 5, X =. 0. Figs. I and 2 show graphically the changes in

e and %L over a year for the following values of a: 24,000, 21,400, 13,500, 7.400 kin,

as computed using formula (5). The curves of e(a) show the annual oscillation, with

the curve changing from convex-upward to convex-downward (the results of the calcu-

lations for a - 42,000 km are in agreement with the data of references r4] and 7Sj).

As the computations for other initial data showed, as e0 increases the entire set of

curves will have a tendency to fall lower. For each value of e- it is possible to

select a value of a fox which a minimum change in e is observed (for example, 0.1 %

e S 0.2, 13,000 km S a • 42,000 kin). rhe shape of the eccentricity curves repeats

from year to year. The perigee (Fig.2) moves in an &nnual circle with variable

velocity, making a full revo!.uticn per year (the strz.ight line denotes the change

in longitude of the sun). With large values of e. or small valu.s of A/m the per-

turbationas in w, as follows from (5). will be small and will show up as oscillatory

(loop-shaped) motion around the initial position.

Dependence on Eccentricity. Let us select an orbit close to synchronous-

* - 42,000 kin, i_- 15, JA -a C (0 0 Figs. 3 and 4 show graphs of e and a, for

a series of e.: 0.01, 0.1, 0.2, 0.3, 0.4 and 0.5. Again we ste three types of curve

for e(e.): for eo, ý 0.32 the perigee moves in a forward motion; for e > 0.31 tha
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motion reveries. For e - 0.5 the parigee moves vith a counter loop-shaped mdtion,

making a complete revolution Ai 22 years. Fig. S illustrates such a perigree path

over a priod of 4 years: points A1 and A2 are separated by year intervals, A. IS

the sLt-" , position at these times, As will be shown below, the perigee motion for

the next 22 years will be exactly the opposite since the tural period of change is

44 years ('zr a synchronous satellita).

Influence -f Inciination, For orbits with a • 42,000 km:. P, 0.01,

" "= K. OP we examine a series of inclinations I., = P°, 230, 469, 70P. 90P,

11 ,, 00, 160i and 179P. A"I curves of e(L-) (Fig.6) are distributed -In a region

.. ,,by the two roýrves e(i. • c P 230) and e(i q0 + c ;z 1130), where the

• i'ss for values of 10 symmetrical with respect to 1i or 12 must coincide. This

regularity is observed for any choice of initial elements, although the shape of

the e(io) curves will in this case be altered.

Effect of Nodal Longitude a d Argument of Perigee. Let us select two iden-

tical orbits: a - 41,000 kin, ea - 0.1, 3 - 23.50, .. a 09* The effects of the annual

variation in i and P. is compietely exclded from the perturbations of e and i. for

such an orbit, since for f0 a0, -i M I 0- (ecliptic orbit), and these per-

turbatlons are manll for : $ 0U. We shall choose the values ab = OP, £ = 0 90, W

l8If, 270 (,Fig. 7) and rb -O, 0 - O0, 9(P, IBC. 2719 (Fig.8). It is apparent

that the evolutioa of the elements is not aifecteQ by the actual values of £ or

3L but by the mutual initial disposition of node and Ferigee. The inequality of

amplitudes in Figs. 7 and 8 indicates that Q and w enter in quite different ways

into the equation. 3

Influence of Solar Lovnitude. Let us consider a synchronoun orbit: a

42,000 km, eo a 01, i, - 23.39 (ecliptic), r ' .09- The curves of e anid w

C 0, 1809) coincide, and the curves of e and w° 9W, 2709) are symmetri-

cally disposed relative to the straight line z - P/2 (FigQ. 9 and 10). In the

-6- I
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general case of arbitrary eccentricity the curves for ko 3o and 1800 are symmetri-

cally disposed relative to the straight line e. const. On the whole the asymmetry

Is determined by the asymmetry in the positions of perigee and the sun.

Let us now examine the longer-period perturbations. Here we shall consider

the behavior of the elements i and ýi when the amplitudes of the corresponding varia-

tions of e and v are small compared to their annual amplitude (the ordinates of

the maxima of e exhibit only a weak long-period trend). The annual changes in e,

i, and ". exert an influence on i and Q in the form nf weak annual variations

superposed on the main trend. These variations will not be shown on the following

graphs.

V 0:
4.1

,?.o" -270' 90" I00  --;--

0",1' < \% •• t

t, years '.... t. years
05 O 0. .0

Fig.9 Fig.I0

The variation of i and Q without taking shadowing into account is defined

by the formulas

di 3 no:c dQ 3 na~i;
d -'--'2cOsa,, dt" 2 sin I9--- e (7)

where

W--sIn I n2!n' sin (o + IQ)+ si incs4 sin ( c-- !)s+
+ cos isin E sin.

It is clear from (7) that we have, as a function of the arguments of the trigono-

metric termus, either the annual variations due to changes in XV or the variations

arising from the superposition of variations with periods 2r: and 2-1: - Since
hit og

these derivatives are small the oscillation periods can be quite long.
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• Influence of Semi-axis. We choose an elliptical orbit, near equatorial

(e, 0.1, iu jo 50• = XO = OP) and vary the semiaxis: a1 42000 km, a

23,000 km, a3 13,500 km. From the formulas it follows that the amplitudes should

be related as /- and the periods as I/ /-a.

Graphs of the variations in i and are shown in Figs. 11 and 12. The

amplitudes are related as 2.5:2:1.5, the periods as 4:5.2:f.7. The minimum period

represents a stationary orbit -- 44 years. The variations in the other elements will

be considered just for this period.

The Influence of Elements having an Annual Period of Variation. Among

these quantities are e, w and X,.. By virtue of the fact that \, has no annual per-

iodicity and it is negligibly small for e and i, these elements exert no appreciable

effect on the course of i and .. Calculations for the stable. orbit yteld almost

idenLical curves and therefore we shall not reproduce them here. This is observed

even for large values of e, when the annual movement in Ji is appreciable.

t, years t.years

SFig. 13 Fig. 14
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influence of Inclinction. The elements i and .Q react strongly on the

variation in i and their plots differ for different values of iv. Let us again

consider the orbit: a - 42,000 km, e. - 0.0k, ujo %0 - 00. All equatorial

and near- equatorial orbits show an increese in i proportional to I/sin i (Fig. 13)

until, finally, the curve of i (io :; ) reduces to a straigVt line (W - 0,

61 - 61 - 0). For all 11 > c, i begins to decrease, wi*Lh the maximum amplitude of

the decrease corresponding to io _ 90P + c ::t i130 , since W(4 1 90° + E)

cos E sin 1, (cos a + sin e) has a maximum. Then the amplitudes decrease and the

curves i(io - 17Q0) and i(i- 10) are symmetrical around the line i. - 900. The

curves of 0(i.) (Fig. 14) show a long-period counter motion of the node for l- > E

and a loop-shaped motion for i. < E. The node of the elliptical orbit is stationary.

The distribution of curves by amplitude is preserved for any value of ýý but the

symmetry is lost.

Influence of Node Longitude. Let us select a stationary, ecliptic orbit.

In this cese we observe complete symmetry of the curves i (1.o 00, 1800) for both

half-perluids, where 5i(0 - 0) - 0 since W - 0. The curves i(.% - 900, 2700) pass

through each other on rotation around the axis t - P/2 (Fig. 15). In the case

wo -0O we again have 60 - 0 (Fig. 16), and ior other values of %o the node motion

is in the opposite direction with variable velocities. The entire set of curves

i(.%) for equatorial orbits should be stretched out upward, and the rate of change

of 0(£%) should vary more strongly. In the case of a polar orbit the curves

i(% - 0°, 1800) should be rigorously symmetrical with respect to 1, const, and

the late of movement of the node should be almost constant.

Y~ee

2•k 0 X0 40 30 TO 20 39• 40
Fig. 15 Fi..16
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Let us now exat-.Ine the influence of the parameter A/m on the development

of the orbital elemnnts. Until row we have varied the orbital elements of earth

satellites with the same value of A/h = 200 cm/g, &.,d have considered this to be

a fixed quantity. Let us now set up a single orbit (a = 42,000 kin, e. = 0.01,

ina 50, ub a 0- Xou 0°)and select certain values of A/m (AIm = 200:0.1 A/m,

5 A/m, 7 A/m, 10 A/m). Fig. 17 shows curves of the change in eccentricity over a

A

Q1  I Earth satellite7 '1

. . . . ars a e lite-11

1020 30 4O 0 o60 70 a5 -t
C, days t. years

Fig.17 Fig. 18

2-month interval. From these curves we can form a conclusion regarding the magni-

tude of the changes in the remaining orbital elements. In the calculations we used,

A •as before, the spherical satellite model with constant A/m. For this satellite

the question of orientation relative to the solar radiation during the course of

the year does not arise. In addition, the acceleration of a spherical satellite

does not depend on its surface reflectivity (with geometrical reflection properties).

In the general case the object with constant A/m may be a satellite of arbitrary

{• shape that preserves its orientation relative to the sun. If the orientation of

the satellite is r.rbitrary, the law of the change in illuminated surface should be

given functionally, as was done, for example, in reference [5] for synchronous sate-

llites. Here we must keep in mind that the acceleration F of any satellite will lie

in the range
~Fs < F <Fp

here F la the acceleration of a sphere and F is the acceleration of a flat plate
'3 p

I -I1l-
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who:e illuminated surface is equal to the central cross section of the s'phere and

of the arbitrary satellite. In this case we compute the acceleration from the

formu: as

'7F,,(1 +e)P,c•'sh--+- F, =(1 --s)P, sln~cosO.-i,

where r is the coefficient of reflection, 0 is the angle of incidence, F and F

are the normal and tangential components of the pressure.

In order to compare the perturbations of individual satellites for two

planets, let us consider satellites orbiting Earth and Mars. For comparison pur-

poses we select a heavy satellite (A/o = 0.1 cm 2/g) in an orbit with the elements

a = 42,000 kin, e, = 0.01, io = 5`, a = 00. For the earth this is close

to an actual synchronous satellite. Fig. 18 shows curves *f the change in the

perigee radius-vector in the course of a year. The maximum amplitude for the earth

amounts to about 7 km. The corresponding amplitudes in w are =10 per year; the

perigee executes small oscillations around the stable position, so that a longitude

shift of the satellite is not expected. The middle curve of Fig. 18 shows &r for

a satellite of Mars; the annual amplitude does not exceed 0.5 km. This difference

is explained by the fact that the value of Pr in the Mars orbit is about half that

in the Earth orbit, which is close to che synchronous orbit (a z 20,000 km). We

present a table of some values taken from the calculations made for tha curves of

Fig. i1.

[Earth Mars

d, I 0.45"10- 0 .20 -

F,cm/sec 2  0,45 .?,0-' 0.20. ,0-
R, X 1 6371 3407
fJf, sl sec2  398600 42900
to 23'5 25A0

i., deg/day MO.9M56 0.52500

-12-



References

1. G.N. Duboshin. Nebesnaia mekhanika (Celestial Mechanics); Moscow, "Nauka"
c19 63 ).

2. M.F. Subbotin, Vvedenie v teoreticheskuyu astronomiyu (Introduction to theo-
retical astronomy); Mosco, "Nauka" (1968).

3. E.N. Polyakhova. Radiation pressure and the motion of earth satellites,
Bylleten' ITA; 9, No. 1, Issue 104 (1963).

4. E. Lewin. Solar radiation pressure perturbations of earth satellite orbits,
AIM J. 6, No. 1 (1968).

5. A.G. Lubowe. Orbital behaviour of large synchronous satellites, Astronaut.
Act.; 13, No. 1 (1967).

6. Y. Kozai. Effects of solar radiation Pressure on the motion of an artificial
satellite. Smith. Astrophys. Obs.; Special Report 56 (1961).

7. 1.1. Shapiro. The prediction of satellite orbits, SXMposium on dynamics of
satellites; Paris (1962).

Received: February 6, 1969.

-13-



Distribution of this document has been made to

members of the APL staff in accordance with a

list on file in the Distribution Project of the

APL/JHU Technical Reports Group. The only

distribution external to APL is to the Defense

Documentation Center in Alexandria, Virginia,

and to the Translations Center of the Special

Libraries Association which is located in the

John Crerar Library in Chicago, Illinois.


